1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
use crate::*;
impl Cx {
pub const STD_SHADER: CodeFragment = code_fragment!(
r#"
// See [`PassUniforms`] for documentation on these fields.
uniform camera_projection: mat4 in pass;
uniform camera_view: mat4 in pass;
uniform inv_camera_rot: mat4 in pass;
uniform dpi_factor: float in pass;
uniform dpi_dilate: float in pass;
// See [`DrawUniforms`] for documentation on these fields.
uniform draw_clip: vec4 in draw;
uniform draw_scroll: vec2 in draw;
uniform draw_local_scroll: vec2 in draw;
uniform draw_zbias: float in draw;
const PI: float = 3.141592653589793;
const E: float = 2.718281828459045;
const LN2: float = 0.6931471805599453;
const LN10: float = 2.302585092994046;
const LOG2E: float = 1.4426950408889634;
const LOG10E: float = 0.4342944819032518;
const SQRT1_2: float = 0.70710678118654757;
const TORAD: float = 0.017453292519943295;
const GOLDEN: float = 1.618033988749895;
// The current distance field
struct Df {
pos: vec2,
result: vec4,
last_pos: vec2,
start_pos: vec2,
shape: float,
clip: float,
has_clip: float,
old_shape: float,
blur: float,
aa: float,
scale: float,
field: float
}
impl Math{
// Rotate vector `v` by radians `a`
fn rotate_2d(v: vec2, a: float)->vec2 {
let ca = cos(a);
let sa = sin(a);
return vec2(v.x * ca - v.y * sa, v.x * sa + v.y * ca);
}
}
//http://gamedev.stackexchange.com/questions/59797/glsl-shader-change-hue-saturation-brightness
fn hsv2rgb(c: vec4) -> vec4 {
let K = vec4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);
let p = abs(fract(c.xxx + K.xyz) * 6.0 - K.www);
return vec4(c.z * mix(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y), c.w);
}
fn rgb2hsv(c: vec4) -> vec4 {
let K: vec4 = vec4(0.0, -1.0 / 3.0, 2.0 / 3.0, -1.0);
let p: vec4 = mix(vec4(c.bg, K.wz), vec4(c.gb, K.xy), step(c.b, c.g));
let q: vec4 = mix(vec4(p.xyw, c.r), vec4(c.r, p.yzx), step(p.x, c.r));
let d: float = q.x - min(q.w, q.y);
let e: float = 1.0e-10;
return vec4(abs(q.z + (q.w - q.y) / (6.0 * d + e)), d / (q.x + e), q.x, c.w);
}
impl Df {
// Creates a distance field with the current position
fn viewport(pos: vec2) -> Df {
let df: Df;
df.pos = pos;
df.result = vec4(0.);
df.last_pos = vec2(0.);
df.start_pos = vec2(0.);
df.shape = 1e+20;
df.clip = -1e+20;
df.has_clip = 0.0;
df.old_shape = 1e+20;
df.blur = 0.00001;
df.aa = Df::antialias(pos);
df.scale = 1.0;
df.field = 0.0;
return df;
}
// Creates a distance field with the current position, matching pixel scale
fn viewport_px(pos: vec2) -> Df {
return Df::viewport(pos * dpi_factor);
}
// Adds a new field value to the current distance field
fn add_field(inout self, field: float) {
self.field = field / self.scale;
self.old_shape = self.shape;
self.shape = min(self.field, self.shape);
}
// Adds a clip mask to the current distance field
fn add_clip(inout self, d: float) {
d = d / self.scale;
self.clip = max(self.clip, d);
self.has_clip = 1.;
}
fn antialias(p: vec2) -> float {
return 1.0 / length(vec2(length(dFdx(p)), length(dFdy(p))));
}
// Translate a specified offset
fn translate(inout self, offset: vec2) -> vec2 {
self.pos -= offset;
return self.pos;
}
// Rotate by `a` radians around pivot
fn rotate(inout self, a: float, pivot: vec2) {
self.pos = Math::rotate_2d(self.pos - pivot, -a) + pivot;
}
// Uniformly scale by factor `f` around `pivot`
fn scale(inout self, f: float, pivot: vec2) {
self.scale *= f;
self.pos = (self.pos - pivot) * f + pivot;
}
// Sets clear color. Useful for specifying background colors before
// rendering a path.
fn clear(inout self, color: vec4) {
self.write_color(color, 1.0);
}
// Calculate antialiasing blur
// Private function
fn calc_blur(inout self, w: float) -> float {
let wa = clamp(-w * self.aa, 0.0, 1.0);
let wb = 1.0;
if self.blur > 0.001 {
wb = clamp(-w / self.blur, 0.0, 1.0);
}
return wa * wb;
}
// Clears path in current distance field.
fn new_path(inout self) -> vec4 {
self.old_shape = self.shape = 1e+20;
self.clip = -1e+20;
self.has_clip = 0.;
return self.result;
}
// Writes a color to the distance field, using premultiplied alpha
// Private function. Users should instead use `clear`, `fill`, `stroke`.
fn write_color(inout self, src: vec4, w: float) -> vec4{
let src_a = src.a * w;
self.result = src * src_a + (1. - src_a) * self.result;
return self.result;
}
// Fills the current path with `color`.
fn fill(inout self, color: vec4) -> vec4 {
let f = self.calc_blur(self.shape);
self.write_color(color, f);
if self.has_clip > 0. {
self.write_color(color, self.calc_blur(self.clip));
}
return self.result;
}
// Strokes the current path with `color` with a pixel width of `width`.
fn stroke(inout self, color: vec4, width: float) -> vec4 {
let f = self.calc_blur(abs(self.shape) - width / self.scale);
return self.write_color(color, f);
}
// Updates the current path by summing colors in `width`
// with the provided one.
fn glow(inout self, color: vec4, width: float) -> vec4 {
let f = self.calc_blur(abs(self.shape) - width / self.scale);
let source = vec4(color.rgb * color.a, color.a);
let dest = self.result;
self.result = vec4(source.rgb * f, 0.) + dest;
return self.result;
}
// Set field to the union of the current and previous field.
fn union(inout self) {
self.old_shape = self.shape = min(self.field, self.old_shape);
}
// Set field to the intersection of the current and previous field.
fn intersect(inout self) {
self.old_shape = self.shape = max(self.field, self.old_shape);
}
// Subtract current field from previous.
fn subtract(inout self) {
self.old_shape = self.shape = max(-self.field, self.old_shape);
}
// Interpolate current field and previous with factor k
fn blend(inout self, k: float) {
self.old_shape = self.shape = mix(self.old_shape, self.field, k);
}
// Renders a circle at p with radius r
fn circle(inout self, p: vec2, r: float) {
let c = self.pos - p;
self.add_field(length(c) - r);
}
// Render an arc at p with radius r between angles angle_start and angle_end.
fn arc(inout self, p: vec2, r: float, angle_start: float, angle_end: float) {
let c = self.pos - p;
let angle = mod(atan(c.x, -c.y) + 2.*PI, 2.*PI);
let d = max( angle_start - angle, angle - angle_end );
let len = max(length(c) * d, length(c) - r);
self.add_field(len / self.scale);
}
// Render a box with rounded corners at p with dimensions d.
// Use `r` to indicate the corner radius - if r is less than 1, render a basic
// rectangle. If r is bigger than min(w, h), the result will be a circle.
fn box(inout self, pos: vec2, size: vec2, r: float) {
let half_size = 0.5 * size;
let center = pos + half_size;
r = min(r, min(size.x, size.y));
half_size -= r;
let dist_from_edge = abs(center - self.pos) - half_size;
let dneg = min(dist_from_edge, 0.);
let dpos = max(dist_from_edge, 0.);
let df = max(dneg.x, dneg.y) + length(dpos);
self.add_field(df - r);
}
// Render a rectangle at p with dimensions d.
fn rect(inout self, p: vec2, d: vec2) {
self.box(p, d, 0.);
}
// Render a triangle between points p0, p1, p2.
fn triangle(inout self, p0: vec2, p1: vec2, p2: vec2) {
let e0 = p1 - p0;
let e1 = p2 - p1;
let e2 = p0-p2;
let v0 = self.pos - p0;
let v1 = self.pos - p1;
let v2 = self.pos - p2;
let pq0 = v0 - e0 * clamp(dot(v0, e0) / dot(e0, e0), 0.0, 1.0);
let pq1 = v1 - e1 * clamp(dot(v1, e1) / dot(e1, e1), 0.0, 1.0);
let pq2 = v2 - e2 * clamp(dot(v2, e2) / dot(e2, e2), 0.0, 1.0);
let s = sign(e0.x * e2.y - e0.y * e2.x);
let d = min(min(vec2(dot(pq0, pq0), s*(v0.x * e0.y - v0.y * e0.x)),
vec2(dot(pq1, pq1), s * (v1.x * e1.y - v1.y * e1.x))),
vec2(dot(pq2, pq2), s * (v2.x * e2.y - v2.y * e2.x)));
self.add_field(-sqrt(d.x) * sign(d.y));
}
// Render a hexagon at p with side length r.
fn hexagon(inout self, p: vec2, r: float) {
let dx = abs(p.x - self.pos.x) * 1.15;
let dy = abs(p.y - self.pos.y);
self.add_field(max(dy + cos(60.0 * TORAD) * dx - r, dx - r));
}
// Move to p in current path, not drawing from current position.
fn move_to(inout self, p: vec2) {
self.last_pos =
self.start_pos = p;
}
// Render a line to p from current position.
fn line_to(inout self, p: vec2) {
let pa = self.pos - self.last_pos;
let ba = p - self.last_pos;
let h = clamp(dot(pa, ba) / dot(ba, ba), 0.0, 1.0);
let s = sign(pa.x * ba.y - pa.y * ba.x);
self.field = length(pa - ba * h) / self.scale;
self.old_shape = self.shape;
self.shape = min(self.shape, self.field);
self.clip = max(self.clip, self.field * s);
self.has_clip = 1.0;
self.last_pos = p;
}
// End the current field by rendering a line back to the start point
fn close_path(inout self) {
self.line_to(self.start_pos);
}
}
"#
);
}