1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
//! An animation system for transitioning between various kinds of values over time.

use crate::*;
use std::f64::consts::PI;

/// Manages animations. Assumes that you always pass it with [`Anim`] objects with
/// the same types of [`Track`]s. For example, if track 0 represents represents a
/// color Vec4, and track 1 represents a Float value, then make sure to use that
/// consistently throughout the lifetime of an Animator.
///
/// TODO(JP): Look into enforcing this through the type system, instead of at
/// runtime.
///
/// Also note that the [`Animator`] always contains the "source of truth" for the
/// values it manages, so whenever necessary you should copy the values kept
/// here to the actual "draw objects".
#[derive(Debug, Default)]
pub struct Animator {
    /// The current source of truth of values that this [`Animator`] manages.
    /// Initially undefined, until [`Animator::draw`] initializes the Animator.
    ///
    /// Call [`Animator::draw`] or [`Animator::handle`] to update these
    /// values based on the [`Animator::current`] animation and the current time.
    values: Option<Vec<AnimValue>>,

    /// The current [`Anim`] that is being played. Is [`None`] when there is no
    /// active animation.
    current: Option<Anim>,

    /// The [`Anim`] that will be played next when [`Animator::current`] is done playing. It
    /// should never be possible that [`Animator::next`] is set but [`Animator::current`] isn't. There
    /// can only be one animation queued up.
    next: Option<Anim>,

    /// The time that the [`Animator::current`] animation started playing.
    current_start_time: f64,

    /// The last timestamp we updated our animation, used to avoid computing the
    /// animation values multiple times for the same timestamp.
    last_processed_time: f64,
}

impl Animator {
    /// Play an animation. If an animation is already playing, it's either cut
    /// off, or remains playing with the new animation queued up, if [`Anim::chain`]
    /// is set in the new animation. If there was already another animation
    /// queued up, then it's kicked from the queue.
    pub fn play_anim(&mut self, cx: &mut Cx, anim: Anim) {
        if self.current.is_none() || !anim.chain {
            // If there is no current animation or if we're not chaining, just
            // overwrite the current animation.
            self.current = Some(anim);
            self.next = None;
            self.current_start_time = cx.last_event_time;
            // Make sure that we request a new frame to play our animation in.
            cx.request_next_frame();
        } else {
            // Otherwise, queue it, kicking out any previous animation in the
            // queue.
            self.next = Some(anim);
        }
    }

    /// Process animations from a "draw" function. This must be called before reading any values.
    ///
    /// The `anim_default` will initialze the Animator if it's currently uninitialized.
    pub fn draw(&mut self, cx: &mut Cx, anim_default: Anim) {
        if self.values.is_none() {
            self.values = Some(anim_default.get_last_values());
        }
        self.run_animator(cx);
    }

    /// Convenient function for only calling [`Animator::run_animator`] if the event is
    /// an [`Event::NextFrame`]. Returns true if we processed the animation so you
    /// can update your "draw objects".
    pub fn handle(&mut self, cx: &mut Cx, event: &Event) -> bool {
        match event {
            Event::NextFrame => self.values.is_some() && self.run_animator(cx),
            _ => false,
        }
    }

    /// Process any playing animations based on the current time from [`Cx`].
    /// Returns whether or not [`Animator::values`] have been updated, so you can update
    /// your "draw objects" accordingly. Note that [`Animator::values`] are the "source of
    /// truth", so when in doubt it's always safe to just update your objects
    /// based on [`Animator::values`] regardless of the return value of [`Animator::draw`].
    fn run_animator(&mut self, cx: &mut Cx) -> bool {
        // Skip if time hasn't changed, unless this is the initial call.
        if cx.last_event_time == self.last_processed_time {
            return false;
        }
        self.last_processed_time = cx.last_event_time;

        // First check if the current animation has expired, in which case we need to either stop
        // animating, or start with the queued up animation.
        if let Some(current_anim) = &self.current {
            if self.current_start_time + current_anim.duration <= cx.last_event_time {
                // Make sure that `values` actually reflects the "end state" of the animation, since
                // at the previous rendering step we were probably a little bit before the actual
                // end.
                self.values = Some(current_anim.get_last_values());

                if self.next.is_none() {
                    // If there was no animation queued up, just bail out, but still return `true`
                    // since we've changed `values`.
                    self.current = None;
                    return true;
                } else {
                    // Don't just set the new current_start_time to the current time, since most
                    // likely we have overshot a little and are actually a tiny bit into the next
                    // animation already.
                    self.current_start_time += current_anim.duration;
                    std::mem::swap(&mut self.current, &mut self.next);
                    self.next = None;
                    // Fall through, so we compute the current values based on the animation that
                    // was queued up (and which is now `current`).
                }
            }
        }

        // If we still have an active animation, compute `values`.
        if let Some(current_anim) = &self.current {
            // First, make sure that we will get a next frame for our animation.
            cx.request_next_frame();

            // Compute the fraction between 0 and 1 of how far we are into the current animation.
            let time_fraction = (cx.last_event_time - self.current_start_time) / current_anim.duration;

            let values = self.values.as_mut().unwrap();

            // Update all the individual values based on how far we are into the current animation.
            for (index, track) in current_anim.tracks.iter().enumerate() {
                match track {
                    Track::Float { key_frames, ease } => {
                        values[index] = AnimValue::Float(Track::compute_track_float(
                            time_fraction,
                            key_frames,
                            values[index].unwrap_float(),
                            ease,
                        ));
                    }
                    Track::Vec2 { key_frames, ease } => {
                        values[index] = AnimValue::Vec2(Track::compute_track_vec2(
                            time_fraction,
                            key_frames,
                            values[index].unwrap_vec2(),
                            ease,
                        ));
                    }
                    Track::Vec3 { key_frames, ease } => {
                        values[index] = AnimValue::Vec3(Track::compute_track_vec3(
                            time_fraction,
                            key_frames,
                            values[index].unwrap_vec3(),
                            ease,
                        ));
                    }
                    Track::Vec4 { key_frames, ease } => {
                        values[index] = AnimValue::Vec4(Track::compute_track_vec4(
                            time_fraction,
                            key_frames,
                            values[index].unwrap_vec4(),
                            ease,
                        ));
                    }
                }
            }
            return true;
        }
        false
    }

    /// Get the value of the given track as a float. Be sure to call this only if the given track is
    /// indeed always a float in the [`Anim`]s you pass into this [`Animator`].
    /// TODO(JP): Instead of having multiple functions here, perhaps we can use [`Into`?
    pub fn get_float(&self, track_index: usize) -> f32 {
        self.values.as_ref().unwrap()[track_index].unwrap_float()
    }

    /// Get the value of the given track as a [`Vec2`]. Be sure to call this only if the given track is
    /// indeed always a [`Vec2`] in the [`Anim`]s you pass into this [`Animator`].
    /// TODO(JP): Instead of having multiple functions here, perhaps we can use [`Into`?
    pub fn get_vec2(&self, track_index: usize) -> Vec2 {
        self.values.as_ref().unwrap()[track_index].unwrap_vec2()
    }

    /// Get the value of the given track as a [`Vec3`]. Be sure to call this only if the given track is
    /// indeed always a [`Vec3`] in the [`Anim`]s you pass into this [`Animator`].
    /// TODO(JP): Instead of having multiple functions here, perhaps we can use [`Into`?
    pub fn get_vec3(&self, track_index: usize) -> Vec3 {
        self.values.as_ref().unwrap()[track_index].unwrap_vec3()
    }

    /// Get the value of the given track as a [`Vec4`]. Be sure to call this only if the given track is
    /// indeed always a [`Vec4`] in the [`Anim`]s you pass into this [`Animator`].
    /// TODO(JP): Instead of having multiple functions here, perhaps we can use [`Into`?
    pub fn get_vec4(&self, track_index: usize) -> Vec4 {
        self.values.as_ref().unwrap()[track_index].unwrap_vec4()
    }
}

/// Represents an actual value in an [`Animator`], which can be of a few
/// different types, but should remain consistent in its type (for a
/// given [`Track`]) for the lifetime of an [`Animator`].
#[derive(Clone, Debug)]
pub enum AnimValue {
    Float(f32),
    Vec2(Vec2),
    Vec3(Vec3),
    Vec4(Vec4),
}

impl AnimValue {
    /// Get the value as a float. Be sure to call this only if the given track is
    /// indeed always a float in the [`Anim`]s you pass into the [`Animator`].
    /// TODO(JP): Instead of having multiple functions here, perhaps we can use [`Into`?
    fn unwrap_float(&self) -> f32 {
        match self {
            AnimValue::Float(cur_val) => *cur_val,
            _ => panic!("Unexpected AnimValue type"),
        }
    }

    /// Get the value as a [`Vec2`]. Be sure to call this only if the given track is
    /// indeed always a [`Vec2`] in the [`Anim`]s you pass into the [`Animator`].
    /// TODO(JP): Instead of having multiple functions here, perhaps we can use [`Into`?
    fn unwrap_vec2(&self) -> Vec2 {
        match self {
            AnimValue::Vec2(cur_val) => *cur_val,
            _ => panic!("Unexpected AnimValue type"),
        }
    }

    /// Get the value as a [`Vec3`]. Be sure to call this only if the given track is
    /// indeed always a [`Vec3`] in the [`Anim`]s you pass into the [`Animator`].
    /// TODO(JP): Instead of having multiple functions here, perhaps we can use [`Into`?
    fn unwrap_vec3(&self) -> Vec3 {
        match self {
            AnimValue::Vec3(cur_val) => *cur_val,
            _ => panic!("Unexpected AnimValue type"),
        }
    }

    /// Get the value as a [`Vec4`]. Be sure to call this only if the given track is
    /// indeed always a [`Vec4`] in the [`Anim`]s you pass into the [`Animator`].
    /// TODO(JP): Instead of having multiple functions here, perhaps we can use [`Into`?
    fn unwrap_vec4(&self) -> Vec4 {
        match self {
            AnimValue::Vec4(cur_val) => *cur_val,
            _ => panic!("Unexpected AnimValue type"),
        }
    }
}

/// An actual animation that can be played.
#[derive(Clone, Debug, PartialEq)]
pub struct Anim {
    /// The time it should take for this animation to complete, in seconds.
    pub duration: f64,

    /// If set, this animation will get queued up if there is an existing
    /// animation playing.
    pub chain: bool,

    /// The actual tracks of values that will change during this animation.
    /// Should remain consistent between the different animations that you pass
    /// into a single [`Animator`].
    ///
    /// TODO(JP): Allow for dynamically defined animations:
    /// <https://github.com/Zaplib/zaplib/issues/167>
    pub tracks: &'static [Track],
}

impl Anim {
    /// TODO(JP): Replace these with Anim::default() when
    /// <https://github.com/rust-lang/rust/issues/67792> gets done
    pub const DEFAULT: Anim = Anim { duration: 0., chain: false, tracks: &[] };

    /// Get the values for the "end state" of an animation, ie. the values for
    /// when the animation is done.
    fn get_last_values(&self) -> Vec<AnimValue> {
        self.tracks
            .iter()
            .map(|track| match track {
                Track::Vec4 { key_frames, .. } => AnimValue::Vec4(key_frames.last().unwrap().1),
                Track::Vec3 { key_frames, .. } => AnimValue::Vec3(key_frames.last().unwrap().1),
                Track::Vec2 { key_frames, .. } => AnimValue::Vec2(key_frames.last().unwrap().1),
                Track::Float { key_frames, .. } => AnimValue::Float(key_frames.last().unwrap().1),
            })
            .collect()
    }
}
impl Default for Anim {
    fn default() -> Self {
        Anim::DEFAULT
    }
}

/// Describes how output values of a [`Track`] get mapped for fractions in between
/// keyframes. See these pages for more explanations:
/// * <https://developer.mozilla.org/en-US/docs/Web/CSS/easing-function>
/// * <https://easings.net>
#[derive(Clone, Debug, PartialEq)]
pub enum Ease {
    Lin,
    InQuad,
    OutQuad,
    InOutQuad,
    InCubic,
    OutCubic,
    InOutCubic,
    InQuart,
    OutQuart,
    InOutQuart,
    InQuint,
    OutQuint,
    InOutQuint,
    InSine,
    OutSine,
    InOutSine,
    InExp,
    OutExp,
    InOutExp,
    InCirc,
    OutCirc,
    InOutCirc,
    InElastic,
    OutElastic,
    InOutElastic,
    InBack,
    OutBack,
    InOutBack,
    InBounce,
    OutBounce,
    InOutBounce,
    Pow { begin: f64, end: f64 },
    Bezier { cp0: f64, cp1: f64, cp2: f64, cp3: f64 },
}
impl Ease {
    /// TODO(JP): Replace these with Ease::default() when
    /// <https://github.com/rust-lang/rust/issues/67792> gets done
    pub const DEFAULT: Ease = Ease::InOutCubic;
}
impl Default for Ease {
    fn default() -> Self {
        Ease::DEFAULT
    }
}

impl Ease {
    // Clippy TODO
    #[warn(clippy::many_single_char_names)]
    pub fn map(&self, t: f64) -> f64 {
        match self {
            Ease::Lin => t.max(0.0).min(1.0),
            Ease::Pow { begin, end } => {
                if t < 0. {
                    return 0.;
                }
                if t > 1. {
                    return 1.;
                }
                let a = -1. / (begin * begin).max(1.0);
                let b = 1. + 1. / (end * end).max(1.0);
                let t2 = (((a - 1.) * -b) / (a * (1. - b))).powf(t);
                (-a * b + b * a * t2) / (a * t2 - b)
            }

            Ease::InQuad => t * t,
            Ease::OutQuad => t * (2.0 - t),
            Ease::InOutQuad => {
                let t = t * 2.0;
                if t < 1. {
                    0.5 * t * t
                } else {
                    let t = t - 1.;
                    -0.5 * (t * (t - 2.) - 1.)
                }
            }
            Ease::InCubic => t * t * t,
            Ease::OutCubic => {
                let t2 = t - 1.0;
                t2 * t2 * t2 + 1.0
            }
            Ease::InOutCubic => {
                let t = t * 2.0;
                if t < 1. {
                    0.5 * t * t * t
                } else {
                    let t = t - 2.;
                    1. / 2. * (t * t * t + 2.)
                }
            }
            Ease::InQuart => t * t * t * t,
            Ease::OutQuart => {
                let t = t - 1.;
                -(t * t * t * t - 1.)
            }
            Ease::InOutQuart => {
                let t = t * 2.0;
                if t < 1. {
                    0.5 * t * t * t * t
                } else {
                    let t = t - 2.;
                    -0.5 * (t * t * t * t - 2.)
                }
            }
            Ease::InQuint => t * t * t * t * t,
            Ease::OutQuint => {
                let t = t - 1.;
                t * t * t * t * t + 1.
            }
            Ease::InOutQuint => {
                let t = t * 2.0;
                if t < 1. {
                    0.5 * t * t * t * t * t
                } else {
                    let t = t - 2.;
                    0.5 * (t * t * t * t * t + 2.)
                }
            }
            Ease::InSine => -(t * PI * 0.5).cos() + 1.,
            Ease::OutSine => (t * PI * 0.5).sin(),
            Ease::InOutSine => -0.5 * ((t * PI).cos() - 1.),
            Ease::InExp => {
                if t < 0.001 {
                    0.
                } else {
                    2.0f64.powf(10. * (t - 1.))
                }
            }
            Ease::OutExp => {
                if t > 0.999 {
                    1.
                } else {
                    -(2.0f64.powf(-10. * t)) + 1.
                }
            }
            Ease::InOutExp => {
                if t < 0.001 {
                    return 0.;
                }
                if t > 0.999 {
                    return 1.;
                }
                let t = t * 2.0;
                if t < 1. {
                    0.5 * 2.0f64.powf(10. * (t - 1.))
                } else {
                    let t = t - 1.;
                    0.5 * (-(2.0f64.powf(-10. * t)) + 2.)
                }
            }
            Ease::InCirc => -((1. - t * t).sqrt() - 1.),
            Ease::OutCirc => {
                let t = t - 1.;
                (1. - t * t).sqrt()
            }
            Ease::InOutCirc => {
                let t = t * 2.;
                if t < 1. {
                    -0.5 * ((1. - t * t).sqrt() - 1.)
                } else {
                    let t = t - 2.;
                    0.5 * ((1. - t * t).sqrt() + 1.)
                }
            }
            Ease::InElastic => {
                let p = 0.3;
                let s = p / 4.0; // c = 1.0, b = 0.0, d = 1.0
                if t < 0.001 {
                    return 0.;
                }
                if t > 0.999 {
                    return 1.;
                }
                let t = t - 1.0;
                -(2.0f64.powf(10.0 * t) * ((t - s) * (2.0 * PI) / p).sin())
            }
            Ease::OutElastic => {
                let p = 0.3;
                let s = p / 4.0; // c = 1.0, b = 0.0, d = 1.0

                if t < 0.001 {
                    return 0.;
                }
                if t > 0.999 {
                    return 1.;
                }
                2.0f64.powf(-10.0 * t) * ((t - s) * (2.0 * PI) / p).sin() + 1.0
            }
            Ease::InOutElastic => {
                let p = 0.3;
                let s = p / 4.0; // c = 1.0, b = 0.0, d = 1.0
                if t < 0.001 {
                    return 0.;
                }
                if t > 0.999 {
                    return 1.;
                }
                let t = t * 2.0;
                if t < 1. {
                    let t = t - 1.0;
                    -0.5 * (2.0f64.powf(10.0 * t) * ((t - s) * (2.0 * PI) / p).sin())
                } else {
                    let t = t - 1.0;
                    0.5 * 2.0f64.powf(-10.0 * t) * ((t - s) * (2.0 * PI) / p).sin() + 1.0
                }
            }
            Ease::InBack => {
                let s = 1.70158;
                t * t * ((s + 1.) * t - s)
            }
            Ease::OutBack => {
                let s = 1.70158;
                let t = t - 1.;
                t * t * ((s + 1.) * t + s) + 1.
            }
            Ease::InOutBack => {
                let s = 1.70158;
                let t = t * 2.0;
                if t < 1. {
                    let s = s * 1.525;
                    0.5 * (t * t * ((s + 1.) * t - s))
                } else {
                    let t = t - 2.;
                    0.5 * (t * t * ((s + 1.) * t + s) + 2.)
                }
            }
            Ease::InBounce => 1.0 - Ease::OutBounce.map(1.0 - t),
            Ease::OutBounce => {
                if t < (1. / 2.75) {
                    return 7.5625 * t * t;
                }
                if t < (2. / 2.75) {
                    let t = t - (1.5 / 2.75);
                    return 7.5625 * t * t + 0.75;
                }
                if t < (2.5 / 2.75) {
                    let t = t - (2.25 / 2.75);
                    return 7.5625 * t * t + 0.9375;
                }
                let t = t - (2.625 / 2.75);
                7.5625 * t * t + 0.984375
            }
            Ease::InOutBounce => {
                if t < 0.5 {
                    Ease::InBounce.map(t * 2.) * 0.5
                } else {
                    Ease::OutBounce.map(t * 2. - 1.) * 0.5 + 0.5
                }
            }
            Ease::Bezier { cp0, cp1, cp2, cp3 } => {
                if t < 0. {
                    return 0.;
                }
                if t > 1. {
                    return 1.;
                }

                if (cp0 - cp1).abs() < 0.001 && (cp2 - cp3).abs() < 0.001 {
                    return t;
                }

                let epsilon = 1.0 / 200.0 * t;
                let cx = 3.0 * cp0;
                let bx = 3.0 * (cp2 - cp0) - cx;
                let ax = 1.0 - cx - bx;
                let cy = 3.0 * cp1;
                let by = 3.0 * (cp3 - cp1) - cy;
                let ay = 1.0 - cy - by;
                let mut u = t;

                for _i in 0..6 {
                    let x = ((ax * u + bx) * u + cx) * u - t;
                    if x.abs() < epsilon {
                        return ((ay * u + by) * u + cy) * u;
                    }
                    let d = (3.0 * ax * u + 2.0 * bx) * u + cx;
                    if d.abs() < 1e-6 {
                        break;
                    }
                    u -= x / d;
                }

                if t > 1. {
                    return (ay + by) + cy;
                }
                if t < 0. {
                    return 0.0;
                }

                let mut w = 0.0;
                let mut v = 1.0;
                u = t;
                for _i in 0..8 {
                    let x = ((ax * u + bx) * u + cx) * u;
                    if (x - t).abs() < epsilon {
                        return ((ay * u + by) * u + cy) * u;
                    }

                    if t > x {
                        w = u;
                    } else {
                        v = u;
                    }
                    u = (v - w) * 0.5 + w;
                }

                ((ay * u + by) * u + cy) * u
            }
        }
    }
}

/// Represents a single value that changes during the course of an animation.
/// Should remain consistent in its type and what it represents between the
/// different animations that you pass into a single [`Animator`].
///
/// `key_frames` are tuples, where the first value is the fraction between 0 and
/// 1 that represents how much of the animation has been played so far, and the
/// second value is the actual value that this track should take on at that time.
#[derive(Clone, Debug, PartialEq)]
pub enum Track {
    Float { ease: Ease, key_frames: &'static [(f64, f32)] },
    Vec2 { ease: Ease, key_frames: &'static [(f64, Vec2)] },
    Vec3 { ease: Ease, key_frames: &'static [(f64, Vec3)] },
    Vec4 { ease: Ease, key_frames: &'static [(f64, Vec4)] },
}

impl Track {
    fn compute_track_float(time: f64, track: &[(f64, f32)], init: f32, ease: &Ease) -> f32 {
        if track.is_empty() {
            return init;
        }
        fn lerp(a: f32, b: f32, f: f32) -> f32 {
            a * (1.0 - f) + b * f
        }
        // find the 2 keys we want
        for i in 0..track.len() {
            if time >= track[i].0 {
                // we found the left key
                let val1 = &track[i];
                if i == track.len() - 1 {
                    // last key
                    return val1.1;
                }
                let val2 = &track[i + 1];
                // lerp it
                let f = ease.map((time - val1.0) / (val2.0 - val1.0)) as f32;
                return lerp(val1.1, val2.1, f);
            }
        }
        let val2 = &track[0];
        let f = ease.map(time / val2.0) as f32;
        lerp(init, val2.1, f)
    }

    fn compute_track_vec2(time: f64, track: &[(f64, Vec2)], init: Vec2, ease: &Ease) -> Vec2 {
        if track.is_empty() {
            return init;
        }
        fn lerp(a: Vec2, b: Vec2, f: f32) -> Vec2 {
            let nf = 1.0 - f;
            Vec2 { x: a.x * nf + b.x * f, y: a.y * nf + b.y * f }
        }
        // find the 2 keys we want
        for i in 0..track.len() {
            if time >= track[i].0 {
                // we found the left key
                let val1 = &track[i];
                if i == track.len() - 1 {
                    // last key
                    return val1.1;
                }
                let val2 = &track[i + 1];
                // lerp it
                let f = ease.map((time - val1.0) / (val2.0 - val1.0)) as f32;
                return lerp(val1.1, val2.1, f);
            }
        }
        let val2 = &track[0];
        let f = ease.map(time / val2.0) as f32;
        lerp(init, val2.1, f)
    }

    fn compute_track_vec3(time: f64, track: &[(f64, Vec3)], init: Vec3, ease: &Ease) -> Vec3 {
        if track.is_empty() {
            return init;
        }
        fn lerp(a: Vec3, b: Vec3, f: f32) -> Vec3 {
            let nf = 1.0 - f;
            Vec3 { x: a.x * nf + b.x * f, y: a.y * nf + b.y * f, z: a.z * nf + b.z * f }
        }
        // find the 2 keys we want
        for i in 0..track.len() {
            if time >= track[i].0 {
                // we found the left key
                let val1 = &track[i];
                if i == track.len() - 1 {
                    // last key
                    return val1.1;
                }
                let val2 = &track[i + 1];
                // lerp it
                let f = ease.map((time - val1.0) / (val2.0 - val1.0)) as f32;
                return lerp(val1.1, val2.1, f);
            }
        }
        let val2 = &track[0];
        let f = ease.map(time / val2.0) as f32;
        lerp(init, val2.1, f)
    }

    fn compute_track_vec4(time: f64, track: &[(f64, Vec4)], init: Vec4, ease: &Ease) -> Vec4 {
        if track.is_empty() {
            return init;
        }
        fn lerp(a: Vec4, b: Vec4, f: f32) -> Vec4 {
            let nf = 1.0 - f;
            Vec4 { x: a.x * nf + b.x * f, y: a.y * nf + b.y * f, z: a.z * nf + b.z * f, w: a.w * nf + b.w * f }
        }
        // find the 2 keys we want
        for i in 0..track.len() {
            if time >= track[i].0 {
                // we found the left key
                let val1 = &track[i];
                if i == track.len() - 1 {
                    // last key
                    return val1.1;
                }
                let val2 = &track[i + 1];
                // lerp it
                let f = ease.map((time - val1.0) / (val2.0 - val1.0)) as f32;
                return lerp(val1.1, val2.1, f);
            }
        }
        let val2 = &track[0];
        let f = ease.map(time / val2.0) as f32;
        lerp(init, val2.1, f)
    }
}